2nd Order Systems w/o Numerator Dynamics

- Origin: typical example is a 2nd order ODE with constant parameters.

\[a_2 \frac{d^2 y}{dt^2} + a_1 \frac{dy}{dt} + a_0 y = b_0 u \]

\[\gamma^2 y'' + 2 \xi \gamma y' + y = ku \quad \text{where:} \quad \gamma^2 = \frac{a_2}{a_0} \]

\[2 \xi \gamma = \frac{a_1}{a_0} \]

\[k = \frac{b_0}{a_0} \]

- \(k = \text{gain} \) [output units/input units]
- \(\xi = \text{damping factor} \) [dimensionless]
- \(\gamma = \text{period} \) [time]

- Take Laplace Transform (assuming: \(y'(0) = y(0) = 0 \))

\[\gamma^2 s^2 y(s) + 2 \xi \gamma s y(s) + y(s) = k u(s) \]

\[\Rightarrow y(s) = \frac{k}{\gamma^2 s^2 + 2 \xi \gamma s + 1} \cdot u(s) \]

\[\Rightarrow \text{2nd order system} \]

- the denominator of our transfer function tells us a lot about our system.
 - roots of denominator = "poles"
 - roots of numerator = "zeros"
2 poles: \[P_1 = \frac{-\xi}{\zeta} + \frac{\sqrt{\xi^2 - 1}}{\zeta} \]
\[P_2 = \frac{-\xi}{\zeta} - \frac{\sqrt{\xi^2 - 1}}{\zeta} \]

- It is assumed that \(\xi, \zeta > \phi \), so that the system is stable.
 (by definition \(\zeta > \phi \). Therefore, \(\xi \) must be > \(\phi \) to ensure that the poles are negative).

- There are 3 different cases that we can distinguish, just by looking at the value of \(\xi \) or our "damping factor". (see Table 3-2).

 CASE #1: \(\xi > 1 \)
 - **POLES**: 2 real, distinct roots
 - **OUTPUT**: overdamped

 CASE #2: \(\xi = 1 \)
 - 2 real, equal roots
 - critically damped

 CASE #3: \(\xi < 1 \)
 - 2 coupled, complex roots
 - underdamped

In order to get a better understanding of how these systems behave, we will look at these 3 cases and their response to a step input.

system model: \(Y(s) = G_p(s) \cdot U(s) \rightarrow U(s) = \Delta u/s \)
\[y(s) = \frac{k}{\zeta^2 s^2 + 2\xi \zeta s + 1} \cdot \frac{\Delta u}{s} \]

CASE #1: \(\xi > 1 \) (overdamped). Most chemical processes are overdamped.

\[\text{factor denominator:} \quad \tau_1 = \frac{\zeta}{\xi - \sqrt{\xi^2 - 1}} \quad \tau_2 = \frac{\zeta}{\xi + \sqrt{\xi^2 - 1}} \]

\[y(s) \rightarrow y(t) : y(t) = k \Delta u \left[1 + \frac{\tau_1 e^{-t/\tau_1} - \tau_2 e^{-t/\tau_2}}{(\tau_2 - \tau_1)} \right] \]

\[y(0^+) = ? \quad y(\infty) = ? \]

\[y(0^+) = \phi \quad y(\infty) = k \Delta u \]

\(\boxed{\text{Higher values of } \phi \text{ tend to approach new steady-state more gradually.}} \)

CASE 2: \(\phi = 1 \) (critically damped)

\(\rightarrow \) Time-domain solution to a step input:

\[y(t) = k \Delta u \cdot \left[1 - (1 + \frac{t}{\tau_2}) e^{-t/\tau_2} \right] \]

\(\boxed{\text{Q: What happened to } \tau_1 \text{ and } \tau_2 ?} \)

\(\boxed{\text{A: } \tau = \tau_1 = \tau_2} \)

\(\boxed{\text{Approach to steady-state is faster than in the overdamped systems.}} \)

\[\boxed{\text{Comparison of 2nd Order vs. 1st Order system responses:}} \]

- 2nd order systems = have S-shaped responses (with an inflection point at short times.

- 1st order systems = have no inflection point. The maximum slope occurs initially and gradually decreases with time.

\(\boxed{\text{Initial response of the system to a step change is dictated by the "relative order" of the system:}} \)

\[\text{r.o.} = \text{order of } "s" \text{ in the denominator} - \text{order of } "s" \text{ in numerator} \]

- if r.o. = 1, then initial response has a non-zero slope.

- if r.o. > 1, then initial response has a zero slope.
\[y(t) = k DU \left[1 - \frac{1}{\sqrt{1 - \frac{\xi^2}{r^2}}} \cdot e^{-\xi t / r} \cdot \sin (\alpha t + \phi) \right] \]

\[\alpha = \sqrt{1 - \frac{\xi^2}{r^2}} \quad \phi = \tan^{-1} \left(\frac{\sqrt{1 - \frac{\xi^2}{r^2}}}{\xi} \right) \]

\[y(\phi) = k DU \left[1 - \frac{1}{\sqrt{1 - \frac{\xi^2}{r^2}}} \cdot \sin (\phi) \right] \]

\[\sin \phi = \frac{y}{r} \quad \tan \phi = \frac{y}{x} \quad \phi = \tan^{-1} \left(\frac{y}{x} \right) \]

\[\sin (\tan^{-1} \left(\frac{y}{x} \right)) = \frac{y}{r} \]

\[y = \sqrt{1 - \frac{\xi^2}{r^2}} \quad x = \frac{\xi}{r} \]

\[r^2 = x^2 + y^2 = \frac{\xi^2}{r^2} + \sqrt{1 - \frac{\xi^2}{r^2}}^2 = \frac{\xi^2}{r^2} + 1 - \frac{\xi^2}{r^2} = 1 \]

\[r = \frac{2}{1} \]

\[\rightarrow y(\phi) = k DU \left[1 - \frac{1}{\sqrt{1 - \frac{\xi^2}{r^2}}} \cdot \sqrt{1 - \frac{\xi^2}{r^2}} \right] = k DU \left[1 - 1 \right] = 0 \]

First Order System:
\[y(t) = k DU \left[1 - e^{-\xi t / r} \right] \]

Slope:
\[\frac{dy}{dt} = -k DU \left[\frac{\xi}{r} \right] e^{-\xi t / r} = \frac{k DU}{r} e^{-\xi t / r} \]

Slope at t = 0:
\[k DU / r \left(1 \right) = \frac{k DU}{r} \]
CASE 3: $\xi < 1$ (underdamped):

$$\text{poles} = \frac{-\xi \pm \sqrt{\xi^2 - 1}}{2}$$

Time-domain solution:

$$y(t) = k\Delta u \cdot \left[1 - \frac{1}{\sqrt{1 - \xi^2}} \cdot e^{-\xi t/\tau} \cdot \sin \left(\alpha t + \phi \right) \right]$$

$$\alpha = \frac{\sqrt{1 - \xi^2}}{\tau}, \quad \phi = \tan^{-1} \left(\frac{\sqrt{1 - \xi^2}}{\xi} \right)$$

Q: What is the output going to look like?

- $y(\phi) = \text{?}$
- $y(\infty) = \text{?}$

- $y(\phi) = \phi$
- $y(\infty) = k\Delta u$

- As ξ becomes smaller, response is more oscillatory.
- As ξ becomes larger, response is less oscillatory.

- Look at the ratio: Imaginary:\ Real: $\frac{\sqrt{1 - \xi^2}}{\xi}$

\Rightarrow Relative magnitude of oscillations.

Definitions:

1. Rise time = amount of time needed to first reach the new steady-state value.
2. Time to first peak = amount of time needed to first reach the first peak.
3. Overshoot = distance between first peak and the new steady-state. Use this to calculate the "overshoot ratio".
4) decay ratio: relative overshoot distance between successive peaks. (measure of how quickly oscillations are decaying).

5) period of oscillation: time between successive peaks.

Now... 2nd Order Systems with Numerator Dynamics

Transfer Function: \(g_p(s) = \frac{K_p}{(\tau_1 s + 1)(\tau_2 s + 1)} \) relative order?

This is written in "gain/time constant" form

"pole-zero" form: \(g_p(s) = \frac{K_p (s - z_1)}{(s - p_1)(s - p_2)} \)

Response to a step input:

\[
y(t) = K_p \Delta U \left[\frac{1}{\tau_1} e^{-t/\tau_1} + \frac{1}{\tau_2} e^{-t/\tau_2} \right]
\]

Example:

\[
y(s) = \frac{\tau_n s + 1}{(3s + 1)(15s + 1)} \cdot \frac{1}{s}
\]

→ Look at limiting cases:

1) \(\tau_n = 3 \) \(\Rightarrow \) \(y(s) = \frac{1}{s(15s + 1)} \)

2) \(\tau_n = 15 \) \(\Rightarrow \) \(y(s) = \frac{1}{s(3s + 1)} \)

☆ These two limiting cases provide a good source of validation, when looking at various values of \(\tau_n \).

☆ \(\tau_n < \phi \) → inverse response. Example: two first-order systems in parallel, with gains of opposite signs.
3.8 Lead-Lag Behavior

Transfer function: \(g_p(s) = \frac{kp}{\frac{\tau_n s + 1}{\tau_p s + 1}} \Rightarrow \frac{s^2 + s + c}{s^2 + s + c} \)

Relative order = ?

Step input response: \(u(s) = \Delta u / s \)

\[y(t) = kp \Delta u \left[1 - \left(1 - \frac{s}{\tau_p} \right) e^{-t/\tau_p} \right] \]

\(y(\phi) = ? \quad y(\infty) = ? \)

\[y(\phi) = \frac{\tau_n}{\tau_p} \cdot kp \cdot \Delta u \]

\[y(\infty) = kp \Delta u \]

Chemical Processes do not typically show this type of behavior.

Controllers sometimes do.